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The Three Hallmarks of Superconductivity
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Zero Resistance

R = 0 only at w = 0 (DC)

R > 0 for w > 0

E
Quasiparticles

Cooper Pairs

2D

0

The Kamerlingh Onnes resistance 
measurement of mercury.  At 4.15K the 
resistance suddenly dropped to zero

Energy

Gap
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Perfect Diamagnetism
Magnetic Fields and Superconductors are not generally compatible

The Meissner Effect

The Yamanashi MLX01 MagLev
test vehicle achieved a speed of 

361 mph (581 kph) in 2003

Super-
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High Frequency Electrodynamics 

of Superconductors

• Why are Superconductors so Useful at High Frequencies?

• Normal Metal Electrodynamics

• The Two-Fluid Model

• London Equations

• BCS Electrodynamics

• Nonlinear Surface Impedance
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Why are Superconductors so Useful 

at High Frequencies?
Low Losses: 

Filters have low insertion loss  Better S/N, filters can be made small

High Q  Filters have steep skirts, good out-of-band rejection

NMR/MRI SC RF pickup coils  x10 improvement in speed of spectrometer

Low Dispersion: 

SC transmission lines can carry short pulses with little distortion

RSFQ logic pulses – 1 ps long, ~2 mV in amplitude:   psmV07.20 F dttV

Superconducting Transmission Lines
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Normal Metal Electrodynamics

Consider a TEM wave incident normally on a metal half-space

Metal

Constitutive equations for metal

EJFree


 Ohm’s law

(local limit)
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Continuity Equation
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  ~ (1 Wcm)(8.85 x 10-12 F/m)

~ 10-19 s

Hence we can ignore free charge in the conductor

In reality free charge dissipates at the collision time scale, c ~ 10-14 – 10-12 s
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Normal Metal Electrodynamics

Take the curl of the curl equations
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These are wave equations with a  dissipative term
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For a metal with  = 1 W-cm at 2.5 GHz, m 0.1
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Animated version
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Normal Metal Electrodynamics

Griffiths, Electrodynamics
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Phase difference between E, B:

http://fermi.la.asu.edu/w9cf/skin/index.html
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Electrodynamics of Superconductors

in the Meissner State

E
Quasiparticles

(Normal Fluid)

Cooper Pairs

(Super Fluid)

2D
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Superfluid channel

Normal Fluid channel

Energy

Gap

 = n – i 2

J = Js + Jn
Js

Jn

Current-carrying superconductor

J =  E n = nne
2/m

2 = nse
2/mw

nn = number of QPs

ns = number of SC electrons

 = QP momentum relaxation time

m = carrier mass

w = frequencyT0

n
nn(T)

ns(T)

Tc

J

n = ns(T) + nn(T)
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Superconductor Electrodynamics

“binding energy” of Cooper pair (100 GHz ~ few THz)

T = 0

ideal s-wave

w /0iiXRZ sss Surface Impedance (w > 0)

Normal State
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Superconducting State (w < 2D)

wl 01 0~  ss XR

Penetration depth

l(0) ~ 20 – 200 nm

p nse
2/mw

Finite-temperature: Xs(T) = wL = w0l(T) → ∞ as T →Tc  (and wps(T) → 0)

Narrow wire or thin film of thickness t : L(T) = 0l(T) coth(t/l(T)) → 0 l2(T)/t
Kinetic Inductance

Superfluid density

l2 ~ m/ns

~ 1/wps
2

T

ns(T)

Tc0
0

/2D

Normal State (T > Tc)
(Drude Model)

1/
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Surface Impedance
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Surface Resistance Rs: Measure of Ohmic power dissipation
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The London Equations
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2nd London Equation

These equations yield the Meissner screening
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The London Equations continued

Normal metal Superconductor

B is the source of Js,

spontaneous flux

exclusion

E is the source of Jn E=0: Js goes on forever

Lenz’s Law

1st London Equation  E is required to maintain an ac current in a SC

Cooper pair has finite inertia  QPs are accelerated and dissipation occurs
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BCS Microwave Electrodynamics
Low Microwave Dissipation

Full energy gap → Rs can be made arbitrarily small
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The surface resistance and reactance values depend on the rf current

level flowing in the superconductor

Data from M. Hein, Wuppertal
Similar results for Xs(Bs)
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How can Superconductors become Nonlinear?

Superconducting

grains

Josephson

weak links

Granularity

Small x ~ grain boundary thickness

Intrinsic Nonlinear Meissner Effect

rf currents cause de-pairing – convert superfluid into normal fluid

Nonlinearities are generally strongest near Tc and weaken at lower temperatures
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See Appl. Phys. Lett. 88, 212503 (2006)

+ Vortex Entry and Flow

Heating

)cos(2

0

p c

J
I

L
F





20

How to Model Superconducting Nonlinearity?

(1) Taylor series expansion of nonlinear I-V curve (Z. Y. Shen)
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Experimental High Frequency Superconductivity

• Resonators

•Cavity Perturbation

• Measurements of Nonlinearity

• Topics of Current Interest

• Microwave Microscopy
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Resonators

… the building block of superconducting applications …

Microwave surface impedance measurements

Cavity Quantum Electrodynamics of Qubits

Superconducting RF Accelerators

Metamaterials (eff < 0 ‘atoms’)

etc.

Pout

co-planar waveguide resonator

Pin

f
f0

|S21(f)|
2 resonator 

transmission

Port 1

Port 2
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Resonators (continued)

T = 79 K

P = - 10 dBm

f = 5.285 GHz

YBCO/LaAlO3

CPW Resonator
Excited in Fundamental Mode

Imaged by Laser Scanning Microscopy*

Wstrip = 500 m

1 x 8 mm scan

*A. P. Zhuravel, et al., J. Supercond. 19, 625 (2006)

Scanned Area

RF input
RF output

YBCO Ground Plane

YBCO Ground Plane

STO Substrate
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Transmission Line

Unit Cell

Transmission Line Resonators

Transmission Line Model

Transmission Line Resonator Model

Ccoupling Ccoupling
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Resonators (continued)
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Cavity Perturbation

Objective: determine Rs, Xs (or 1, 2) from f0 and Q measurements

of a resonant cavity containing the sample of interest

Sample at

Temperature T

Microwave

Resonator

Input Output

frequency

transmission

f0

f

f0’

f’

Df = f0’ – f0 µ D(Stored Energy)

D(1/2Q) µ D(Dissipated Energy)

Quality Factor

~ microwave

wavelength

l

T1 T2

B

f

f

U

U
Q


0

Dissipated

Stored 

Cavity perturbation means Df << f0

Q
Rs


 w

w
D


D

2
sX  is the sample/cavity geometry factor
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Measurement of Nonlinearities

Intermodulation is a practical problem
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M. Hein, Wuppertal
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Pin Pout



28

Topics of Current Interest

In Microwave Superconductivity Research

Identifying and eliminating the microscopic sources of extrinsic nonlinearity

Increase device yield

Allows further miniaturization of devices

Allow development of ILC Nb cavities with BCS-limited properties

Superconducting Metamaterials: J. Opt. 13, 024001 (2011)

Low-loss, compact, tunable metamaterial ‘atoms’

Controlling de-coherence in superconducting qubits

Identify and eliminate two-level systems in dielectrics
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Microwave Microscopy of Superconductors
Use near-field optics techniques to obtain super-resolution images of:

1) Materials Properties: Nonlinear response

2) RF fields in operating devices 
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Superconducting Metamaterials

Build artificial ‘atoms’ with tailored electric and magnetic response

An array of these sub-wavelength ‘atoms’ are described by eff, eff

What are we doing?

10.2 mm

22.9 mm

Nb Wires

Plasma frequency ~17 GHz

E

B
All-Nb X-band waveguide + couplers

Nb film, ~ 200 nm thick

0.89 cm

3.0 cm
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Graduate course on Superconductivity (Anlage) 

http://www.physics.umd.edu/courses/Phys798S/anlage/Phys798SAnlageSpring06/index.html 

Superconductivity Links

Gallery of Abrikosov Vortex Lattices 

http://www.fys.uio.no/super/vortex/

Wikipedia article on Superconductivity

http://en.wikipedia.org/wiki/Superconductivity

Superconductor Information for the Beginner

http://www.superconductors.org/

YouTube videos of Superconductivity (Alfred Leitner)

http://www.youtube.com/watch?v=nLWUtUZvOP8
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Please Ask Questions!


